Dan Bauer, Mike I

The operational temperature is from 10-50 milliKelvin. The detector is a 250g puck.

Each detector has: 37 cells in each quadrant, 4 phonon quadrants, 4% Al area coverage, 25% Al area coverage, 37 cells in each quadrant, 4 phonon quadrants.

Feedback electrothermal transition-edge sensors (TES).

Phonon sensors are Al ballistic phonon trapping fins and W.

The charge signal (red) is quickly captured in the Al fins. Phonons (blue) are created by phonons captured. Phonons (blue) are created by phonons created.

Each detector has: 37 cells in each quadrant, 4 phonon quadrants, 4% Al area coverage, 25% Al area coverage, 37 cells in each quadrant, 4 phonon quadrants.

If  $M > 10^{60}$ µx tungsten, then the event rate in Germanium is $0.15 \text{ events/day/kg}$. If $M > 10^{60}$ µx tungsten, then the event rate in Germanium is $0.15 \text{ events/day/kg}$. If $M > 10^{60}$ µx tungsten, then the event rate in Germanium is $0.15 \text{ events/day/kg}$.

The simplest $\Omega_X = 0.3$ and $\Omega_M = 0.7$ when $\Omega_X = 0.3$, $\Omega_M = 0.7$ when $\Omega_X = 0.3$, $\Omega_M = 0.7$.

The lightest neutralino supersymmetric particle is the best candidate for cold dark matter: A Weakly Interacting Massive Particle (WIMP). The interaction of a WIMP with a nucleus imparts only a few tens of keV.

There is manifold evidence that the vast majority of matter in the universe is dark and non-baryonic. There is manifold evidence that the vast majority of matter in the universe is dark and non-baryonic. There is manifold evidence that the vast majority of matter in the universe is dark and non-baryonic.

Stars rotate around galactic centers 3 times faster than can be accounted for by the luminous matter. Stars rotate around galactic centers 3 times faster than can be accounted for by the luminous matter.

Interactions of dark matter in the foreground. Only be explained by the presence of large quantities of dark matter in the foreground. Only be explained by the presence of large quantities of dark matter in the foreground. Only be explained by the presence of large quantities of dark matter in the foreground.

The Cryogenic Dark Matter Search (CDMS) ZIP array... The Cryogenic Dark Matter Search (CDMS) ZIP array... The Cryogenic Dark Matter Search (CDMS) ZIP array...

CDMS SQUID array

The Case for Non-Baryonic Cold Dark Matter

The Case for Non-Baryonic Cold Dark Matter

$\gamma$ and $\beta$ quasiparticles are determined by the electroweak scale, then $\Omega_X = 0.3$ and $\Omega_M = 0.7$ when $\Omega_X = 0.3$, $\Omega_M = 0.7$ when $\Omega_X = 0.3$, $\Omega_M = 0.7$.

$\sigma_{\text{int}}$ is the best candidate for cold dark matter: A Weakly Interacting Massive Particle (WIMP).

$\sigma_{\text{int}}$ is the best candidate for cold dark matter: A Weakly Interacting Massive Particle (WIMP).

$\Omega_{\text{int}}$ is the best candidate for cold dark matter: A Weakly Interacting Massive Particle (WIMP).

...and can seed the development of large scale structure.

Supersymmetric models predict neutralinos are non relativistic at freeze-out and can seed the development of large scale structure. Supersymmetric models predict neutralinos are non relativistic at freeze-out and can seed the development of large scale structure. Supersymmetric models predict neutralinos are non relativistic at freeze-out and can seed the development of large scale structure.

$\Omega_{\text{int}} (\sigma_{\text{int}})$ are non relativistic at freeze-out and can seed the development of large scale structure. $\Omega_{\text{int}} (\sigma_{\text{int}})$ are non relativistic at freeze-out and can seed the development of large scale structure. $\Omega_{\text{int}} (\sigma_{\text{int}})$ are non relativistic at freeze-out and can seed the development of large scale structure.

$\Omega_{\text{int}} (\sigma_{\text{int}})$ are non relativistic at freeze-out and can seed the development of large scale structure. $\Omega_{\text{int}} (\sigma_{\text{int}})$ are non relativistic at freeze-out and can seed the development of large scale structure. $\Omega_{\text{int}} (\sigma_{\text{int}})$ are non relativistic at freeze-out and can seed the development of large scale structure.

$\Omega_{\text{int}} (\sigma_{\text{int}})$ are non relativistic at freeze-out and can seed the development of large scale structure. $\Omega_{\text{int}} (\sigma_{\text{int}})$ are non relativistic at freeze-out and can seed the development of large scale structure. $\Omega_{\text{int}} (\sigma_{\text{int}})$ are non relativistic at freeze-out and can seed the development of large scale structure.

$\Omega_{\text{int}} (\sigma_{\text{int}})$ are non relativistic at freeze-out and can seed the development of large scale structure. $\Omega_{\text{int}} (\sigma_{\text{int}})$ are non relativistic at freeze-out and can seed the development of large scale structure. $\Omega_{\text{int}} (\sigma_{\text{int}})$ are non relativistic at freeze-out and can seed the development of large scale structure.

$\Omega_{\text{int}} (\sigma_{\text{int}})$ are non relativistic at freeze-out and can seed the development of large scale structure. $\Omega_{\text{int}} (\sigma_{\text{int}})$ are non relativistic at freeze-out and can seed the development of large scale structure. $\Omega_{\text{int}} (\sigma_{\text{int}})$ are non relativistic at freeze-out and can seed the development of large scale structure.

$\Omega_{\text{int}} (\sigma_{\text{int}})$ are non relativistic at freeze-out and can seed the development of large scale structure. $\Omega_{\text{int}} (\sigma_{\text{int}})$ are non relativistic at freeze-out and can seed the development of large scale structure. $\Omega_{\text{int}} (\sigma_{\text{int}})$ are non relativistic at freeze-out and can seed the development of large scale structure.

$\Omega_{\text{int}} (\sigma_{\text{int}})$ are non relativistic at freeze-out and can seed the development of large scale structure. $\Omega_{\text{int}} (\sigma_{\text{int}})$ are non relativistic at freeze-out and can seed the development of large scale structure. $\Omega_{\text{int}} (\sigma_{\text{int}})$ are non relativistic at freeze-out and can seed the development of large scale structure.
The production of neutrons by cosmic rays is a major background for CDMS. Why are they important in the context of the Soudan Underground Laboratory?